Acta Cryst. (1969). B25, 120

The X-ray Structure of Rh¹Cl(C₄H₆)₂

BY A. IMMIRZI AND G. ALLEGRA

Istituto di Chimica Industriale del Politecnico and Centro Nazionale di Chimica delle Macromolecole, Sezione I, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

(Received 27 December 1967 and in revised form 26 February 1968)

RhCl(C₄H₆)₂ crystallizes in the tetragonal system, space group $P\overline{4}2_1m$ ($a=b=7.90\pm0.03$; c=6.92 ± 0.02 Å); two equivalent molecules, with crystallographic C_{2r} symmetry, are contained in the unit cell. The disagreement factor, calculated on 385 observed three-dimensional reflexions, is 0.062 after 4 cycles of least-squares refinement. Considering each butadiene group as a bidentate ligand, the metal coordination approximately corresponds to a square pyramid. The independent bond lengths and angles are (Å): $Rh-Cl = 2.44 \pm 0.01$; Rh-C (external) = 2.21 ± 0.01 ; Rh-C (internal) = 2.15 ± 0.01 ; C-C (internal bond) = 1.45 ± 0.02 ; C-C (external bond) = 1.38 ± 0.02 ; C-C-C = $117 \pm 0.6^{\circ}$.

Introduction

In a previous short communication (Porri, Lionetti, Allegra & Immirzi, 1965), the chemical preparation

and the crystal structure of $Rh^{I}Cl(C_{4}H_{6})_{2}$ (1) were briefly described. Now we purpose to discuss in more detail the results of our X-ray investigation of (I) after the least-squares refinement.

	x/a	y/b	z/c	$B_{\rm iso}$ (Å ²)	$B_{11} = B_{22} (Å^2)$	$B_{33}({ m \AA}^2)$	$B_{12}({ m \AA}^2)$
Rh	0.2000	0.0000	0.2197	2.10			_
Cl	0.2000	0.0000	-0.1336		5.89	0.56	- 1.54
C(1)	0.7077	-0.0779	0.4005	3.31			
C(2)	0.7779	-0.0311	0.2250	2.98			
Standard	deviations						
	$\sigma(x)$ (Å)	$\sigma(y)$ (Å)	$\sigma(z)$ (Å)	$\sigma(B_{\rm iso})$ (Å ²)	$\sigma(B_{11}) =$	$\sigma(B_{33})$ (Å ²)	$\sigma(B_{12})$ (Å ²)
					$\sigma(B_{22})$ (Å ²)		
Rh			0.001	0.01			
Cl	_		0.004		0.37	0.12	0.44
C(1)	0.011	0.011	0.012	0.19			
C(2)	0.011	0.009	0.012	0.17	<u> </u>		

Table 1. Fractional coordinates and thermal factors

Fig. 1. Molecular packing of (1), in projection along the c axis. The shortest interatomic non-bonding distances are shown; only the 3.15 Å distance between C atoms is intramolecular.

Table 2. Observed and calculated structure factors

 $2\pi \times PH/1000$ is the angle of phase of each reflexion.'* means 'less than'. ***** means unobserved for geometrical reasons'.

н	ĸ	L		fO	FC	PH		•	ĸ	ι	۴O	FC	Рн		H		K 1		FO	FC.	Рн
0	٩	0	•	••••	439	• •		•		0	• 17		5 5000		,	. ,	7 1				3794
2	0	0		174	196	0	۱	0 1	B	0	• 18	10	5 0			. ;	7 1		• • • •	2 A	2444
6	ő	0		87	87			•	2	•	• 18	17	5000		9	1	7 1		15	٨	4617
8	0	0		57	53				, ,	1	80	174	5 7500		10		7 I 	•	15	17	2457
10	٥	0		40	38	• •		• •	,	1	145	174	7500			1			• 16	4	4774
12		0		• 17	1.	1 O		• (0	1	43	47	, 0		9	ļ			23	19	7594
2	1	0		52	231	5000		5 0	2	1	81	78	7500		10		• •	•	16	4	9967
3	1	0		162	167	5000		70	,	1	30	31	0		9	9	• 1	•	16	٠	5276
4	1	0		51	25	0		۹ ۵)	1	19	19	0		,	0	, , , ,	•		24	2500
1	1	0		113	111	5000	•	• •)	1	37	34	7500		•	0	, , , ,		35	30	7500
7	1	0		73	15	5000	10	י ה		1	• 11	•	•		٠	n	, ,		117	121	5000
a	1	0		13	,	0.00	12			,	• 15	26	7500		5	0	2	•	8	12	7500
9	ı	0		38	43	5000		1		1		67	5920		,	0	, ,		74	77	5000
10	1	0	•	15	0	n	;	• 1		ı	71	67	3079			0	,		52	50	5000
12	1	0		17	10	5000		• •	1	1	80	63	5417		9	0	,	•	11	8	7500
13	1	0	•	18	15	5000			1	1	- 113	103	2554		10	0	,		2 A	28	5000
,	z	0		89	104	n		1	1		66	61	2584		11	0	,	:	13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7500
1	2	0		15	10	n	7	1	1	I .	27	26	5345		Ì.	1	,	•		124	291
5	ź	0		145	140	0	A	1		I	50	46	72A7		,	1	,		12	13	238A
6	z	0		87	88	0	10				• 13	*	5205		1	1	2		131	123	139
7	z	0	٠	12	- I	0	- 11	1	1		• 15	6	5464		÷	;	,		15	15	3618
	2	0		55	58	n	12	1	1		• 15	18	243A		6	ï	,		16	16	2977
10	ź	0	•	42	.,	0	,	2	1		81	65	107		7	ı	,		70	66	9949
11	z	0	•	16	1	5000	2	5	1		90	82	7475			1	2		20	18	3238
15	2	0	٠	17	18	n	5	2	1		73	68	7581		10	-	,		30	**	9732
1	3	0		145	149	5000	٨	,	1		21	15	9719		11	i	,	•	77	25	9937
5	;	0		25 97	21	5000	7	,	1		67	61	7500		12	1	,	•	14	1	7849
	3	0	•	n		5000	9	,	1	•	- 12	12	9500		?	?	'		99	90	5377
7	3	0		"	75	5000	10	2	1		13	,	9370		4	,	,		19	20	6830
	3	0	•	13	,	5000	11	,	1		29	76	7536		5	,	,			,	4028
10	3	0		58 16	38	5000	12	?	1	•	15	6	9972		6	,	,		60	58	5293
11	3	0		33	25	5000	2	;	1		67	57	3956		7	?	?		15	14	7138
12	3	0	٠	17	n	n	5	,	1		20	20	4476		9	,	;		46	45	4861
4	•	0		115	110	0	6	3	1		65	67	2646	1	0	,	,	-	21	29	5043
6	2	0		66	4	5000		3	1		17	15	4291	1	•	,	,	•	13	10	7405
7	4	0	•	13	7	5000	9	,	i		13		2428 4205	1	2	?	?		21	18	4991
8	4	•		48	47	n	10	3	1		29	28	2655			÷	,		12	15	2835
9		0	•	15	4	5000	11	3	ı	•	15	6	5079		5	3	,		68	6.8	47
	4	0		17	5	5000	12	3	1	•	16	14	2520		٨	3	,		14	14	1037
2	4	0	•	18	17	0	5	4	ï		67	12 59	9879 7343		7	3	,		56	55	190
\$	5	0		61	57	5000	٨	4	ī		23	20	79		9	,	;	•	12	30	2 975 91
6 7	5	0	•	13		0	,	4	ı		58	51	7519	1	n	,	,	•	13	10	1748
a	Ś	0		14	5	0000	A Q	4	1	•	12	12	670	1	1	•	'		23	23	241
9	5	0		34	30	5000	10	4	i		14	7	239	1	, ,	3	2	•	14	7	2428
0	5	0	•	16	0	D	H	4	1		28	"	7625		5	2	5		77	22	*/)) 8189
1 .	5	0		20	74	5000	12	4	1	•	16	,	1024		6	4	,		59	57	\$205
6 6	Ś	0	-	51	51	0	5	5	1		29	27	5423		7	4	,		17	14	7656
7	5	0	•	14	4	0	7	ר ק	1		45	42	7561 5062		A 0	4	,		39	39	4967
8 (5	0		40	38	n		5	1	-	34	35	2317	1	0	-	;	•	25	10 24	/#14 5235
9	5	0	•	16		0	٩	5	1	•	14	9	5000	1	1	4	,	•	14	6	7673
, e 1 e	5	0		18	22	0	10	5	1	_	27	24	24 RO	13	,	4	2	•	14	14	5023
, ,	,	0		45	44	5000	~	6	1	•	15	15	5700 8988		5	•	,		55	55	73
8 1	r	0	•	16	١	0	7	6	1		47	40	744A		7	ś	;		47	43	()) 8 74
97		0		29 	23	5000	A	6	ı	٠	13	7	9452		•	5	,	•	12	13	3315
		0	:	17	2	5000	9	•	1		28	24	7339	•	,	5	,		77	27	9929
8 8		5		31	77	0	10	6 6	1	:	15	8	8920	10	2	5	2	•	13	9	2410
										-		• •			•	·	1		<i></i>	14	50

X-ray analysis of the single crystals. Determination of the space group

1

Transparent, yellow-orange, elongated single crystals of (I) form directly from the reaction described by Porri *et al.* (1965). In order to be able to record the Xray spectra, the crystals, which rapidly decompose in air, were put in thin glass tubes, under an inert atmosphere. hkl reflexions with l ranging from 0 to 7 were collected by the usual Weissenberg equi-inclination technique (Mo K α radiation); the c axis coincides with the axis of elongation of the crystals. The old data consisting of the (hkl) layers with h+k=0 and h+k=1(Porri *et al.* 1965) were disregarded in the least-squares refinement, because of the less favourable crystal shape used.

Table 2 (cont.)

н	ĸ	ι	F	0	FC	Рн	н		ĸ	ι		۴N	₽ C	PH	,	4	ĸ	L	۴	0	FC	РН
•	6	2		45	41	5242	,		\$	۰,		21	76	127			5	4		,,	74	7164
7	6	z	•	12	٩	6737			5	3		25	31	7290	1	,	5	4		,,	23	4959
8	6	2		28	79	4940	٩		5	۱		14	17	364		•	٩	٠		70	20	7795
9	6	s	•	13	9	7296	10		5	١		23	21	7417	•	•	5	٠		17	17	5019
10	6	2		24	21	5015	11		5	1	•	12		136	10	'n	5	4		14	14	7371
11	6	2	•	14	6	7416			ĥ	1			26	4595		•	î.	•		1.8	21	747
		2		12	30	19	1			2		25	30	2516				1		21	23	2212
	;	Ś	•	**		7989			4	;		20	22	2444		•		1		13	10	118
10	,	;		14		2115	10		6	į		ii.	12	4854	1	•	~				14	293
11	7	2	•	14	14	9976	1)		6	,		12	14	2466		,	7	4		17	15	5175
		2		25	21	5128	1		,	3		18	17	9954			,			17	17	7500
9		2	•	14	7	7736	,		7	١		19	20	7372		9	7	٠		17	13	5063
10	8	2	÷	14	15	5107	•		7	۱		15	17	n		8	8	٠	•	10	12	9598
9	9	2	•	14	16	212	10		7	١		17	16	7530		•	٩	٠	•	10		2397
1	•	1		79	122	2500			•	2		13	12	4273			0	2		68	84	7500
ć	0			95	94	5000			2	2		15	16	24 30			0	2		49	47	0
:	0	;	1	33 74	1 1 5	5000			•	1	•		9	2500			0	2		67 80		/500
	ŏ	ź		67	74	2500			0	-			4.7	, ,00		5	0			A 3	44	7500
6	0	,		47	48	5000			0	4		47	61	2500		•	0	5		31	29	0
7	0	3		66	70	2500			0	4		50	48	0		7	0	5		30	35	7500
8	0	3		29	31	5000	•	5	n	4		41	45	2500			٥	٩		72	"	n
9	0	3		25	27	2500	•	•	0	4		12	15	n		9	0	5		21	17	7500
10	0	3		20	14	5000		1	n	4		28	30	2500	,	n	0	5		18	20	0
11	0	3		19	20	2500		•	0	٠		27	29	0	ı	1	0	5		15	12	7500
12	0	3	•	12	9	5000			0	1		21	20	2500		2	!	2		56	53	5113
,	1	,		33		7630			0	2		1.7	15	2500		ί.	;	2				7700
ý	÷	,		87	84	9939	1	,	0	1		10	10	0,00		÷	÷	Ś		40	50	2298
	ì	,		95	94	7434			1	4		34	31	4400		5	i	5		40	40	5776
5	1	,		49	51	82		,	1	٠		•4	47	721A		4	ı	5		36	36	7746
6	1	3		57	61	744A		•	1	4		48	47	4766		7	ı	5		28	79	5196
7	1	3		40	41	251		•	1	4		54	56	7560		8	۱	5		"	25	2551
8	1	3		41	45	7340		5	I.	4		25	25	4502		9	1	5		25	21	5168
٩	1	3		10	21	597		5	1	4		31	35	7495	1	n	1	٩		14	15	2541
10	1	3		19	24	7387		,	1	4		35	36	4907	1		1	2		15	16	5122
11		;		17	14	7410		a a	;	2				5048		;	΄,	2		•••		7470
2	÷	,	•	11	77	4660	1	7	÷			18	19	7715			,			47	46	55
3	,	3		99	100	2521	1	1	i	4		17	16	4979		5	2	5		36	19	7477
4	2	3		61	67	\$108	1	,	1	4	•	10	10	1700		6	,	5		34	35	9959
5	2	3		47	52	2497		>	,	4		41	30	9779		,	,	5		31	12	7585
6	7	٦		39	40	4606		3	,	4		48	4.8	2302		A	,	5		25	26	49
7	2	;		4.8	\$1	2509		4	'	4		29	12	91		9	2	5	•	12	17	7843
	1	:		2		5799		2	2	1		10	41	2405	1		΄.	2				7443
10	,	,		17	17	4887		7	,			30	34	2326		,	í	Ś	•	49	46	4869
11	,	,		19	23	2507			,	4		21	23	181		4	,	5		49	54	2863
12	2	3	•	12	10	5061		9	,	4		19	21	2569	i.	5	٦	5		37	38	5021
3	3	3		67	71	152	۱	0	2	4		17	17	111		٨	3	5		30	**	2577
4	3	3		17	84	7398	1	1	2	4		14	15	2379		7	١	5		31	12	4975
5	3	3		41	46	14		3	3	٠		41	46	5493		я	3	5		23	"	2671
<u>^</u>	3	,		46	50	7617		4	3	4		51	52	7664		1	2	2			19	4931
	,	,		30		4644		2	;	2			26	5(7)			1	2	:			4974
	,	Ś		19	18	9635		,	,	4		26	27	5113		4	4	\$	-	41	19	244
10	,	,		21	23	7623		A	,	4		23	25	7412		4	4	5		15	15	7473
11	3	,		16	13	9607		9	3	4		14	16	5179		٨	4	5		28	27	123
12	3	3	•	12	14	7500	1	n	3	4		15	17	7015		7	4	5		74	,,	7393
4	4	3		54	60	5606	1	,	۱	4		14	14	4910	•		4	5		25	"	298
5	4	3		58	64	2343		4	4	4		39	41	140)	9	4	5		21	14	7411
6	4	٦		**	36	4881		٩	4	4		30	**	76 R R	l I	10	4	5	•	13	15	54
,	4	3		41	45	2437		^	4	4		2A	28	9899		11	4	5	•	13	10	7125
	4			20	24	5417		7	1	•		27	28	2376		2	2	2		,,,		3476
10	4	,		11	26	4733		~	2			18	14	2510	• •	,	2	2		26	21	5163
11		,		11	17	7471	1	0	2			15	15	9870)	Å				22	18	2473
.,	,	,	-	35	37	261		i	4	4		14	13	2374		9	5		•	12	15	5184
6	5	3		47	46	7476		5	5	4		29	30	479	5	10	5	5	•	13	12	2568

The tetragonal unit cell of (1) has the following parameters: $a=b=7.90\pm0.03$ Å; $c=6.92\pm0.02$ Å; Z=2; $V=432\pm4$ Å³.

The calculated density $(D_{calc} = 1.67 \text{ g.cm}^{-3})$ agrees with the experimental value, measured by floating crystal techniques, to within a few per cent. Systematic relationships among the X-ray intensities are:

- (a) |F(hkl)| = |F(khl)|;
- (b) |F(hk0)| with h+k=2n+1 are very weak;
- (c) $|F(h00)| \neq 0$ only if h = 2n.

Because of (b), relationship (c) has not been assumed as generally valid. Since no systematic absences are observed on the 00/ reflexions, possible space groups are those corresponding to the numbers (*International Tables for X-ray Crystallography*, 1952): 89 (P422), 90 (P42₁2); 99 (P4mm), 111 (P42m), 113 (P42₁m), 115 (P4m2) and 123 (P4/mmm). Since only two molecules are present per unit cell, and all the carbon atoms cannot be placed on an element of crystallographic symmetry, the last group must be discarded; in fact, it contains too many general positions, 16,

н	ĸ	ι		f0	FC	Рн	н	ĸ	ι		۴O	FC	₽н	н	ĸ	L		FN	FC	Рн
6	6	5		24	23	9852	10	,	6	•	10	9	51 31	,	1	1		4	5	2166
7	6	5		20	20	7801	11	,	6		17	16	7520	٦	1	7		28	29	186
8	6	5		73	19	93	٦	3	6		21	21	576	4	1	7		7	6	6970
9	6	5	٠	13	12	7915	4	3	6		71	64	2304	5	1	7		20	21	294
10	6	5	٠	13	12	9824	5	3	6		17	16	9960	۸	t	7	•	6	2	6894
7	1	5		74	22	5000	٨	э	6		41	43	2459	7	1	7		21	25	38
8	1	5	•	12	13	2452	7	3	6		16	15	32	*	Т	7	•	7	4	6193
9	7	5	•	13	12	5026		3	٨		29	29	2417	9	t	7		14	15	9874
8	8	5	•	13	15	327	9	٦	6	•	10		144	10	ъ	7	•	7	5	7110
ı	0	6		104	100	7500	10	٦	6		19	18	2482	,	,	7		23	20	5215
z	D	6		16	17	5000	4	4	6		18	17	4800	٦	,	7	•	5	4	5263
3	٥	6		86	82	7500	5	4	6		43	43	7530	4	,	7		25	25	4891
4	0	6		22	23	5000	٨	4	6	•	8	11	4514	5	,	7	•	5	6	3146
5	0	6		61	57	7500	7	4	6		34	33	7567	6	,	7		18	20	5073
6	0	6		16	11	5000	A	4	6	•	9	10	4397	7	2	7		6	6	3141
7	0	6		40	19	7500	9	4	٨		20	19	7559	R	,	7		17	19	4808
8	0	6	•	9		5000	5	5	6	•	я	9	8801	9	,	7	•	7	4	2708
9	0	6		23	23	7500	٨	5	6		31	30	2537	10	,	7		11	15	4913
10	0	6	•	10	9	5000	7	5	٨	•	9	10	9599	3	٦	7		79	30	9554
11	0	6		20	16	7500		5	6		22	23	2535	4	3	7	•	5	6	7779
т	ı	6		23	22	9515	9	5	٨	•	10	•	9681	5	3	7		20	77	9839
2	1	6		81	75	2660		6	٨	•	9	9	5204	6	3	1	•	6	8	8876
3	ı	6		18	17	9514	7	6	6		26	26	7344	1	٦	7		18	??	9934
4	ı	٠		78	71	2612	R	6	6	•	10	R	4974		٩	7	•	1	5	7970
5	ı	6		17	17	9349	9	6	6		19	16	1211	3	٦	7		12	14	987A
6	1	6		46	45	2641	7	7	6		15	- 11	9985	4	4	7		24	28	4745
7	1	6		14	12	9594	A	,	6		20	18	2535	5	4	7	•	6	,	1440
8	1	6		34	30	2479	1	n	7	•	••••	9	2500	6	4	7		19	21	5060
9	ı,	6	•	10	9	9874	2	0	7		28	27	5000	7	4	7	•	7	5	2890
10	1	6		22	21	2484	٦	n	7	•	4	,	2500	я	4	7		15	17	5046
11	1	6	•	11	7	9780	4	n	1		30	32	5000	5	5	7		19	21	93
2	Z	6		10	•	4767	5	9	1	•	5	٦	2500	ĥ	5	7	٠	7	3	9435
3	2	6		75	68	7432	*	0	7		20	24	5000	7	5	7		16	19	9983
4	,	6		19	20	4919	7	0	7	•		•	2500	A	5	7	٠	7	•	6783
5	,	6		57	52	7543	8	0	7		1 8	21	5000	6	6	7		16	17	4835
6	2	6		16	15	4868	9	0	7	•	7	3	2500	1	٨	7	•	7	6	339R
7	2	6		47	39	7455	10	ø	7		13	14	5000		۴	7		12	14	4832
8	7	6		14		5070	1	1	1		26	74	368	1	7	7		16	14	9866
9	2	6		23	23	7328														

Table 2 (cont.)

instead of 8 as in the remaining space groups. Each molecule must therefore contain only 2 crystallographically different carbon atoms, and the Rh and Cl atoms must lie on highly special sites. Condition (b) suggests that, in the structural projection along c, Rh and Cl of each molecule are superposed giving rise to a centered arrangement. The above conditions are fulfilled only by the space groups Nos. 90, 113 and 115. The first of these is readily discarded because the Rh-Cl axis would coincide with a fourfold symmetry axis; this is physically impossible unless an improbable statistical disorder is present; the last space group has been discarded on the basis of packing considerations, which will not be discussed further here.

Therefore, the resulting space group is $P\bar{4}2_1m$ (No. 113); the molecule is placed on two crystallographic mirror planes, intersecting at right angles. The Rh-Cl axis coincides with the intersection line, which is also a twofold axis in the structure (Fig. 1); the (rigorous) molecular symmetry is therefore represented by the C_{2v} group. The butadiene group must assume a *cis* conformation, because the two halves of each group must be mirror images.

Structural resolution and refinement

The Rh and Cl z coordinates were first derived from a two-dimensional Patterson synthesis on the (110) projection; then location of all non-hydrogen atoms was

completed by the usual Fourier methods on the same projection.

From the data previously collected (Porri *et al.* 1965), consisting of the (hkl) layers with h+k=0 and h=k=1, a fairly well resolved image of the molecular electron density has been obtained with the use of the modulated Fourier synthesis method (Buerger, 1960). The electron density about the Rh atom position showed an essentially spherical symmetry $(\partial^2 \varrho/\partial z^2 \simeq$

$$\frac{\partial^2 \varrho}{\partial \left(\frac{x+y}{2}\right)^2} = 26$$
 e.Å⁻²), while only about the Cl

atom the contours were markedly ellipsoidal

$$(\dot{c}^2\varrho/\hat{c}z^2 = 11; \dot{c}^2\varrho/\hat{c}\left(\frac{x+y}{z}\right)^2 = 5\cdot 5 \text{ e. } \text{Å}^{-2}).$$
 The final Weis-

senberg equi-inclination data were collected by turning the crystal about the c axis, and we decided to refine the 8 layer scale factors independently; under these conditions, as it has been stressed by Lingafelter & Donohue (1966), the anisotropic refinement of the Rh atom would have been incorrect, because of its large average contribution to the reflexions. For the above reasons we decided to apply anisotropic thermal factors to the Cl atom only.

The full-matrix least-squares refinement was carried out with the aid of a general program prepared by one of us (Immirzi, 1967). The atomic scattering factors were calculated according to Vand, Eiland & Pepinsky (1957), using the values suggested by Moore (1963) for the constants A_i , B_i , C_i , a_i , b_i . After four cycles during which $\Sigma w[|F_{obs}(hkl)| - |F_{calc}(hkl)|]^2$ was minimized, the final shifts were less than 10% of the corresponding standard deviations for the atomic coordinates and less than 50% for the thermal factors. The weighting scheme suggested by Cruickshank (1965) was used, yielding a final disagreement factor R = 0.062 for 385 independent observed reflexions out of 535 reciprocal lattice points with d > 0.60 Å, giving a ratio of 17.5 observed reflexions per parameter. Giving the non-observed reflexions an arbitrary structure factor equal to one half of the observable limit, increases the total disagreement factor to 0.093. Table 1 reports the resulting fractional coordinates and thermal factors together with their standard deviations.

The full list of observed and calculated structure factors is reported in Table 2.

Considerations on the crystal packing and on the molecular structure

By assuming each butadiene group as a bidentate ligand, linked to the metal through its outer C-C bonds, the fivefold coordination around the Rh atom approximately corresponds to a square pyramid (Fig. 2). As has been observed for other organometallic complexes (Mills & Robinson, 1963; Allegra, Logiudice, Natta, Giannini, Fagherazzi & Pino, 1967), the distances from the metal atom to the atoms of the ligands are significantly shorter than to the outer atoms. This seems to be in qualitative agreement with the observation that the central (C-C) bond of each ligand is almost significantly longer than the adjacent bonds: the π electron contribution of the central bond to the coordination with the metal seems larger than that of the other (C-C) bonds. According to Churchill & Mason (1967), in the case of the M-butadiene coordination, the electron back-donation to the conjugated ligands should be very small since it should involve the $b_2(2)$ ligand combination, which tends to increase the double bond character of the inner bond.

As shown in Fig. 1 the most characteristic feature of the molecular packing consists of the fourfold arrangement of up and down molecules around each $\overline{4}$ axis. No C···C intermolecular distance is shorter than 3.65 Å; the shortest Cl···C contact distance between molecules superposed along c is also 3.65 Å. As for the intramolecular non-bonding distances, it seems worth mentioning that, as a result of the coordination to the metal, one C···C contact between different butadiene ligands is shorter (3.15 Å) than that found in graphite (3.40 Å) (Wyckoff, 1963).

The authors acknowledge the helpful assistance of Dr Porri and Dr Lionetti, who supplied as with the samples.

Fig. 2. Resulting molecular structure of (I). Average estimated standard deviations are:

Rh-Cl	0∙005 Å
Rh-C	0.012
CC	0.019
CC-C	0.6 °

References

- Allegra, G., Logiudice, F., Natta, G., Giannini, U., Fagherazzi, G. & Pino, P. (1967). *Chem. Comm.* 1263.
- BUERGER, M. J. (1960). Crystal Structure Analysis, chapter 14. New York: John Wiley.
- CHURCHILL, N. R. & MASON, R. (1967). Advanc. Organometallic Chem. 5, 93.
- CRUICKSHANK, D. W. J. (1965). Computing Methods in Crystallography, Chap. 14. Editor, J. S. ROLLETT. London: Pergamon.
- IMMIRZI, A. (1967). Ric. Sci. 37, 743.
- International Tables for X-Ray Crystallography, (1965). Vol. III. Birmingham: Kynoch Press.
- LINGAFELTER, G. C. & DONOHUE, J. (1966). Acta Cryst. 20, 321.
- MILLS, O. S. & ROBINSON, G. (1963). Acta Cryst. 16, 758.
- MOORE, F. H. (1963). Acta Cryst. 16, 1169.
- PORRI, L., LIONETTI, A., ALLEGRA, G. & IMMIRZI, A. (1965). Chem. Comm. 336.
- VAND, V., EILAND, P. E. & PEPINSKY, R. (1957). Acta Cryst. 10, 303.
- WYCKOFF, R. W. G. (1963). *Crystal Structures*, Vol. I p. 11. New York: Interscience.